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Abstract— Automated diagnosis of Attention
Deficit/Hyperactivity Disorder (ADHD) from brain’s functional
imaging has gained more interest due to its high prevalence
rates among children. While phenotypic information, such
as age and gender, is known to be important in diagnosing
ADHD and critically affects the representation derived from
fMRI brain images, limited studies have integrated phenotypic
information when learning discriminative embedding from
brain imaging for such an automatic classification task. In
this work, we propose to integrate age and gender attributes
through attention mechanism that is jointly optimized when
learning a brain connectivity embedding using convolutional
variational autoencoder derived from resting state functional
magnetic resonance imaging (rs-fMRI) data. Our proposed
framework achieves a state-of-the-art average of 86.22%
accuracy in ADHD vs. typical develop control (TDC) binary
classification task evaluated across five public ADHD-200
competition datasets. Furthermore, our analysis points out
that there are insufficient linked connections to the brain
region of precuneus in the ADHD group.

I. INTRODUCTION

Attention Deficit/Hyperactivity Disorder (ADHD) is one
of the prevalent neurodevelopmental disorders among chil-
dren with demonstrative abnormal mental characteristics.
ADHD patients suffer from symptoms include impulsiveness,
distractibility, and deficient concentration, which caused de-
layed mental, social relationship and adaptation development.
It is often considered etiologically as a consequence of
dietary, genetic and environmental factors [1]. Meanwhile,
although the phenotypic information, such as age, gender
and handedness, are not usually regarded as risk factors of
ADHD, these factors play a critical role in the diagnostic
process of one’s mental development [2]. Many research
have also pointed out the impact of phenotypic attributes
as a function on assessing ADHD’s mental ability. For
example, B’alint et al. stated that males tend to demonstrate a
larger difference of attention functioning comparing between
ADHD and normal control group relative to females [3];
Chen et al. performed a logistic regression analysis on health
insurance database and specified that relative age is a critical
component for diagnosis and medication prescription for
ADHD patients [4]

Being a neurodevelopmental disorder, researchers in neu-
rophysiology have already extensively examined the relation-
ship of brain’s dysfunction of ADHD subjects using BOLD
(blood oxygen-level-dependent) signals in fMRI (functional
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magnet resonance imaging) [5], especially resting state brain
functions. The information about a subject’s phenotypic at-
tributes is also shown to be important in performing machine
learning based diagnosis of ADHD using rs-fMRI brain
imaging. For example, Anderson et al. utilized a non-negative
matrix factorization to embed phenotypic information in
conducting differential diagnosis of ADHD [6]. With the
recent advancement in artificial intelligence, several deep
learning research have shown improved recognition rates
of ADHD classification not only by advancing brain image
representation learning [7] but also by including subject’s age
and gender attribute as inputs to the learned classification
networks. In fact, Riaz et al. has conducted a study in
showing the importance of these phenotypic attributes by
analyzing these features as inputs to a Elastic Net feature
selection algorithm, and they demonstrated a substantial
contribution of each personal attribute in classifying ADHD
using rs-fMRI [8].

Most of previous computational studies, however, simply
incorporate phenotypic attributes essentially as additional
auxiliary inputs to the classifier without explicitly con-
sidering its impact when deriving a discriminative brain
image neural representation for classification. In this work,
we propose to learn a phenotypic-attribute, specifically age
and gender, attentional brain connectivity embedding as a
vectorized neural representation of the brain images gathered
from rs-fMRI. Specifically, the embedding is learned from
90-ROI functional connectivity that is jointly optimized using
an attention layer that is mechanistically controlled by age
and gender attributes within a convolutional variational au-
toencoder architecture. We evaluate our proposed recognition
framework for ADHD classification task on ADHD-200
global competition datasets [9]. The proposed framework
achieves an overall average of 86.22% accuracy across five
sites from different regions of the world. Further, we provide
an analysis on the high attention brain connectivity regions
to understand the key differences between typically develop
control (TDC) and ADHD group.

II. METHODOLOGY
A. Database and Preprocessing

In this work, we conduct a binary classification task on
ADHD-200 dataset [9], which was collected by the con-
sortium of International Neuroimaging Datasharing Initiative
(INDI). A total of 973 subjects from 8 individual sites had
been aggregated. This dataset contained resting state fMRI,
structural MRI, and phenotypic information. Also, each
ADHD group was classified into 3 sub-types: Inattention,
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Fig. 1. Complete architecture for our proposed phenotypic-attribute attentional embedding that is jointly learned using age and gender within a convolutional
variational autoencoder. We evaluate our classification framework in recognizing ADHD in the global ADHD-200 datasets.

TABLE I
SUMMARY OF DATA DISTRIBUTION ON TRAIN/TEST SPLIT IN EACH SITE.

*TDC: TYPICALLY DEVELOP CONTROL

Training Set Testing Set
Site TDC ADHD TDC ADHD

NYU 98 117 12 29
Peking 116 78 27 24
OHSU 41 37 28 6
KKI 61 22 8 3

NeuroIMAGE 23 25 14 11

Hyperactivity and Combined. We exclude Bradley Hospi-
tal/Brown University from our experiment due to incomplete
ADHD label. For the evaluation scheme, we utilize the
same train/test set (listed in Table 1.) in “ADHD-200 Global
Competition” in order to compare the performance fairly
with the previous state-of-art approaches.

For data preprocessing, we obtained raw rs-fMRI data
from NITRC’s website and performed all necessary steps
using SPM12 [10], including slice timing correction, realign-
ment, normalize and smoothing. For each site, we adjusted
the parameter TR, TS and number of slices according to
[9]. Meanwhile, we utilized SPM99 template bounding box
and set voxel size to 3 * 3 * 3 mm3 in the normalization
step. To decrease the impact of noise, we smoothed the
former outcome by 5 mm FWHM Gaussian. In this work, we
focus on the first 90 ROIs from AAL 116 atlas (Automated
Anatomical Labeling) [11] to be our regions of interest.

B. Phenotypic-Attribute Attentional Embedding

Figure 1 depicts our overall classification scheme. The
attention attribute-enhanced network (AAEN) is used to
derive our phenotypic-attribute attentional brain connectivity
embedding. This latent representation is concatenated with
age and gender attributes as final feature vector to be fed into
a support vector machine (SVM) for ADHD classification.

1) Brain Connectivity Matrix: In order to transform the
original time series of BOLD signals to characterize brain
functions, we compute functional connectivity of each sub-
ject on his/her recorded rs-fMRI data. Specifically, we com-
pute the Pearson’s correlation on voxel mean between pairs

of ROIs which results in a 90 x 90 symmetric matrix. The
matrix’s diagonal element is 1 and remain element has values
ranging from -1 to 1 indicating the degree of connectivity
value for each pair of ROI (representing inter-brain region
functional connectivity).

2) Convolutional Variational Autoencoder: Convolutional
Variational Autoencoder (CVAE) [14] has been used as a
powerful unsupervised generative model learning approach
across a variety of machine learning tasks (especially in the
domain of computer vision). Recent work [15] has started
to use CVAE models as a representation learning approach
to derive latent representation of rs-fMRI. In this work, we
also use CVAE as our basic building block in learning the
latent connectivity embedding from resting state fMRI data.

3) Phenotypic-Attribute Attention Mechanism: In this
work, our aim is to learn a phenotypic-attribute attentional
latent representation of rs-fMRI as characterized using brain
connectivity matrix. In specifics, age and gender are the two
attributes to be integrated in this task. We first compute a
Fisher representation [16] using Gaussian mixture number
equals to 2 as a vectorized representation of phenotype
information. This vector is first passed through a 7-layers
1D residual blocks to obtain a deep phenotype representa-
tion, and by taking the sigmoid function of the summation
between the latent vector of CVAE with this deep phenotype
vector, we can derive attention weights that are multiplied
back to the CVAE latent vector to generate our phenotypic-
attribute attentional brain connectivity embedding:

WAtt = Sigmoid (Li,pho. + Lj,cvae) (1)

where,

Li,pho. = ReLU(ReLU(Wx+ b) + x ) (2)

Lj,cvae = µ(X) + Σ1/2(X) · ε (3)

WAtt is the final attention weight we used. Lj, cvae denotes
CVAE’s latent reparameterized by variational mean vector
µ(X) and variance vector Σ1/2(X). Li, pho denotes the phe-
notype representation outputted from 1D residual blocks.
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TABLE II
A COMPARISON OF RECOGNITION RESULTS INCLUDING OUR PROPOSED METHOD AND THE COMPARISON MODELS. ACCURACY IS USED AS OUR

METRIC.

NYU Peking KKI OHSU NeuroIMAGE
Comparison Model Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec.
CVAE 72.19 75.17 65.00 69.41 68.33 70.37 90.90 86.66 92.50 81.17 68.33 70.30 76.00 78.18 74.28
CVAEpho 71.54 72.41 69.44 74.50 63.88 83.95 87.87 61.16 95.83 80.39 83.33 79.76 89.33 87.87 90.47
CVAE-Mergepho 69.10 71.49 58.31 72.28 64.72 76.29 83.63 78.57 91.66 73.13 60.00 73.80 97.60 82.42 92.85
CVAE-DNNpho 75.60 87.33 32.22 75.81 65.36 80.07 87.87 88.88 87.50 74.50 61.11 77.38 96.00 87.27 88.57
Proposed Method 76.42 80.45 66.66 78.43 72.22 83.95 94.54 93.33 95.00 83.33 44.45 89.28 98.40 98.18 97.14

TABLE III
A COMPARISON OF RECOGNITION RESULT TO PREVIOUS RESEARCH.

Approaches NYU Peking KKI NeuroIMAGE
Zou et al. [12] 70.50 62.95 72.82 -
Riaz et al. [8] 60.90 64.70 81.80 44.00
S. Itani et al. [13] 68.30 82.40 - -
Miao et al. [7] 70.73 68.63 81.82 76.00
Proposed Method 76.42 78.43 94.54 98.40

Our final classification is done by training a linear SVM
on latent vector derived from attention attribute-enhanced
network concatenated with raw phenotype attribute values.

III. EXPERIMENTAL SETUP AND RESULT
In our experiment, we follow the train-test division of

ADHD-200 global competition and evaluate our model using
the exactly same architecture on five separate data collection
sites. This evaluation scheme is done by following closely
with the past literature on the same dataset, which measures
classification accuracy; we further present sensitivity and
specificity for completeness. All of the network optimization,
feature selection, and hyperparameter tuning are done strictly
within the training set.
A. Experiment Setup

We carry out TDC versus ADHD classification task with
hyper-parameters settings set to the follows: learning rate:
0.0003, epochs 2000, Adam optimizer. Based on the number
of samples in each site, we adaptively choose the batch size
to be 64 for NYU and Peking, and 32 for the remaining three
sites (KKI, OHSU, NeuroIMAGE). We repeat our framework
five times and report average of the highest accuracy to
demonstrate a more robust performance metric.
B. Comparison Models

In this section, we compare our framework with the
following approaches including a variant usage of integrating
phenotypic attributes in rs-fMRI based ADHD classification:

• CVAE, CVAEpho: This model is considered as a baseline
by directly utilizing the CVAE’s latent for recognition.
The subscript “pho” represent a direct concatenation of
raw phenotypic attributes as input to SVM.

• CVAE-Mergepho: This model takes raw phenotypic at-
tributes and concatenate it to CVAE’s encoded latent to
serve as an additional information during the learning
of the decoding portion of CVAE.

• CVAE-DNNpho: Apart from directly combining phe-
notypic attribute like CVAE-Merge, this model passes
these attributes through a DNN containing 3 fully-
connected layers of size [2-4-4-8] and a sigmoid func-
tion before merging into the CVAE’s latent.

• AANE: Our proposed method (see seciton II.B)

C. Experiment Results

Table 2 summarizes our complete experiment results. In
general, by performing attention reweighing approach, which
considers age and gender attributes in learning brain connec-
tivity network embedding, provides a more discriminative
brain’s rs-fMRI representation for ADHD classification. Our
proposed method achieves the best performances in all five
sites. Especially in KKI and OHSU, our framework achieves
recognition accuracy up to 94.54% and 83.33%, which
improves the second best CVAE-DNNpho model by 6.67%
and 8.83% relative. When comparing with all other baseline
models, we observe a clear superior discriminative power of
our proposed brain rs-fMRI representation.

Furthermore, table 3 summaries the recognition accuracy
when comparing our proposed method with other recently-
published works on the same dataset using the exact same
train-test split. Aside from one site, our proposed method
achieves the best performance in differentiating ADHD and
TDC known to date. The only lower performance occurs
when comparing to the framework proposed by Itani et al.
for data from the Peking site. Itani et al. also integrates
phenotypic attributes into their framework but through the
use of a decision tree approach. We will further investigate
and compare our neural embedding method versus decision
tree clustering method in handling phenotype information.
However, it is promising to see that our proposed framework
demonstrates almost a consistently higher performance by
using neural-embedding based method in integrating pheno-
typic attributes when learning brain connectivity representa-
tion in ADHD versus TDC classification with rs-fMRI.

D. Connectivity Visualization and Analyses
A key feature of our method is that due to it being an

attention based method, we can further perform analysis by
reconstructing those high attention weighted latent dimen-
sions using the learned decoding layer. For each site, we
select top 10 attention weights to perform connectivity matrix
reconstruction and only maintain the top 10% connectivity
edges as the most contributing functional connection within
the brain in differentiating those TDC from ADHD. In Figure
2 (a), we plot top 3 regional connections exists in both TDC
and ADHD group across all five sites, and in Figure 2 (b),
we plot those connectivity exists in TDC but not in ADHD.
From Figure 2 (b), we observe several key connections
missing in the ADHD group as compared to the TDC group.
Interestingly, the key region missing from the ADHD group’s
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(a) Visualization of connectivity in both ADHD and TDC groups. (b) Visualization of deficient connectivity in ADHD groups.
Fig. 2. (a) Top connectivity visualization from three angles, the top 3 most contributing brain regions in both groups (TDC, ADHD) are left middle
occipital gyrus, left and right lingual gyrus respectively. (b) The edges show the connection exists in TDC not in ADHD, the deficient connectivity of
ADHD groups comes from missing connection of precuneus region to angular gyrus, inferior parietal, superior parietal gyrus and median cingulate.

connectivity is precuneus, i.e., we see a missing link from
precuneus to angular gyrus, inferior parietal, superior parietal
gyrus and median cingulate. This result corroborates with
many past research in neuroscience. Precuneus has been
recognized to be involved with consciousness, self-awareness
and episodic memory [17]. Within the Theory of Mind
(ToM) and Execution Function(EF) studies, many works
have indicated that the deficiency of the mental ability in
ADHD [18] is associated with the bilateral from precuneus
to angular gyrus [19] (as similarly found in our observation).
In fact, angular gyrus has also been regard as region for
attention, spatial cognition and verbal working memory [20],
which is also known to have insufficient activation in subjects
with ADHD [21] and is observed in our analysis.

IV. CONCLUSIONS
In this work, we present a computational rs-fMRI neu-

ral embedding framework that learns a phenotypic-attribute
based attention re-weighting mechanism for ADHD clas-
sification task. The AAEN architecture models age-gender
attributes to enhance the modeling capacity of the latent
feature representation derived from convolutional variational
autoencoder. By using this novel representation, our recogni-
tion framework evaluated on the global ADHD-200 dataset
outperforms almost all of the existing state-of-the-art ap-
proaches across five sites. Our results demonstrate that the
proposed framework not only enhance the discriminative
power but also is capable at pointing out affected brain
regions functionally by reconstructing the high attention
latent dimensions. To our knowledge, this is the first study
that performs joint neural embedding in learning the brain
connectivity representation together with personal phenotype
attributes, which demonstrates a consistent state-of-the-art
modeling power across different datasets of ADHD rs-fMRI.
In our future work, we will devise data augmentation strategy
on top of this personal phenotypic generative CVAE model
to handle situations where large quantity of data can be hard
to obtain. Having an automated classification instrument for
ADHD would hopefully lead to a more precise diagnosis
method and further improve treatment decisions.
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